
1

Overture Framework and
General Optimizations of

Object-Oriented Applications
Object-Oriented Tools for

Solving Partial Differential Equations

Dan Quinlan
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

2

The Overture team at
CASC

David Brown
finite volume
methods, adaptive
mesh refinement

Kyle Chand
hybrid grids

Petri Fast
Hele-Shaw flows;
fluid-elastic
interactions

Brian Gunney
ROSE, PADRE

Bill Henshaw
grid generation,

CFD, combustion, multigrid,
Overture Framework

Brian Miller
level set methods,
parallel methods

Anders Petersson
grid generation, CFD

Bobby Phillip
AMR++, fluid-

elastic interactions, multigrid

Dan Quinlan
P++, PADRE, ROSE,
AMR++

Danny Thorne
cache-based optimization,
ROSE

3

Overture project interacts extensively
with university and Lab collaborators

� RPI
� CSU Fort Collins
� University of Colorado
� UC Davis
� Dartmouth
� University of Aukland, NZ
� Royal Institute of Technology, Sweden
� Dutch National Res. Ctr. For Math and Comp. Sci.

� Argonne National Laboratory : PETSc Interoperability

� Pacific Northwest National Laboratory: PADRE Interoperability

4

Outline of Talk

� OVERTURE Framework

— Introduction (Overset Grids, Grid Generation, Solvers)

— Example Applictions

— How Overture Abstractions Work Together

— Interoperability through PADRE

— Optimizations

— ROSE (Performance Optimizations)

–Support for User Defined Grammars (ROSETTA)

–Support for User Defined Optimizations

5

Software Development is a balancing act
involving different types of complexity

Application Complexity
•Geometry
•Physics

Algorithm Complexity
•MultiGrid
•AMR
•Implicit/Explicit Equations
•Conservation
•Higher Order Methods

Architecture Complexity
•Cache
•Vector
•Shared Memory Parallelism
•Distributed Memory Parallelism

6

Design of the OVERTURE Framework

Serial
and

Parallel
Program
Interface

Numerics

Grid Function Objects

MPI PADRE PThreads

Mappings (Geometry)HDF Storage

A
++

/P
++

A
rr

ay
C

l a
s s

Mapped Grid Objects

GridCollectionFunction MappedGridCollection

Operator Libraries Visualization

Adaptive Mesh RefinementElliptic Solvers

Basic Flow Solvers Turbulence Models Front Capturing

Combustion Chemistry (Chemkin)

COMBUSTION APPLICATIONS

CFD

Communication
Data Distribution

and Threads

C
++

O
p

ti
m

iz
in

g
P

re
p

ro
ce

ss
o

r

OTHER APPLICATION DOMAINS

W
ea

th
er

O
ce

an
M

o
d

el
in

g

OUR PRINCIPLE APPLICATION DOMAIN

Reaction
Chemistry

Grid Generation

G
en

er
al

C
F

D

C
h

e m
ic

al
V

ap
o

r
D

ep
o

si
ti

o
n

C
o

m
p

u
ta

ti
o

n
al

B
io

lo
g

y

7

An overset grid consists of a set of logically
rectangular curvilinear grids that overlap where
they meet and which completely cover the
computational domain.

The Overture grid generator, Ogen, automatically
computes the overlap and connectivity
information.

8

Overture supports overlapping grid
technology for complex moving geometries

� Object-oriented tools for
solving CFD problems in
complex moving geometry

� Portable solution for serial
and parallel environments
using A++/P++ array class

� Adaptive mesh refinement
capabilities

� Finite Difference and Finite
Volume technology

� Incompressible, Nearly
incompressible and
Compressible Flow solvers

9

1. Components assembled

2. Intersections computed automatically;
blended to submarine body surface

3. Final overset grid

Components can be added incrementally

The overlapping grid construction approach
is based on component assembly

10

Overset Grid Generation Capabilities

X-section surface

Automatic
surface joining

Singularity removed
using cap patches

Body of revolution

Automatic surface
joining

11

For device-scale combustion simulations,
grids must be constructed from CAD data

A part of the CAD
surface is selected
for meshing

The internal volume
mesh is “grown” inward
from the surface mesh

A hyperbolic surface
grid is “grown” on the
composite surface

12

With Overture, CAD geometry is replaced with a
surface mesh using hyperbolic mesh generation

13

Multigrid Solvers on Overlapping Grids

Automated construction of coarsenings
•an advantage of keeping structured grids in the solution process

•Natural interpolation operators (AMG not a requirement)
•Structured Grids are CPU and memory efficient

14

Hybrid grid generation leverages Ogen
hole-cutting algorithm

Overset mesh built with Overture

15

OVERBLOWN: CFD Solver

Geometry Independent Flow Solver using Overture Framework
Compressible Flow
Incompressible Flow

16

Moving Overlapping grids have been
used to study free boundary problems

Non-Newtonian Hele-Shaw
flow experiment

Hele-Shaw calculation
with Overture

Γ

Computational Grid

17

Computational Model

18

3D Rocket Booster Model

19

Solid Rocket Booster (SRB)
Fuel Grain

3 levels of AMR refinement

Cross-section

3D Boundary Grid for Interior of SRB

20

APPLICATION PROBLEM
Fluid Flow in The Eye

Pictures from http://www.eyesearch.com

21

Computational grid with different
levels of refinement

22

Preliminary Computations and Computational Grids

23

Overture

Program Interfaces

24

Grids and Data

nx ny
nz

Logical grid

nz
nx

ny
Physical grid

nx nynz

PADRE (DOE 2000)
Distributed Logical Grid
(multiple Processors)

Multiple Physical Grids

25

The fundamental building block for the
Overture framework is the P++ array class

Index I(1,98),J(1,98);
floatArray u(100,100);

// update stencil and communicate between processors

u(I,J) += .25*(u(I-1,J) + u(I+1,J) + u(I,J-1) + u(I,J+1));

Details of parallel implementation can be hidden
from the user by the array class

Parallel communication
occurs at the =

Stencil operations on structured grids are
naturally expressed in terms of array operations

Like F90
Arrays

Like F90
Index Triplet

26

In the Overture Framework, complex
objects behave like built-in types...

int i, j,k;

float a, b[10];

j = i + 10;

b[i] = b[i+1];

Index I,J;

CompositeGrid cg;

floatCompositeGridFunction u,v,w;

int grid;

w = u + v;

u[grid](I,J) = w[grid](I+1,J-1);

27

But in addition, more complex
operations can be defined ...

Index I,J;

CompositeGrid cg;

floatCompositeGridFunction u,v,w;

w = u + v;

u[k](I,J) = w[k](I+1,J-1);

w = u.x(); // w = ux

v = u.y(); // v = uy

w = u.xx() + u.yy();

w = u.laplacian();

v = u.div();

28

… and complex operations can be
expressed with concise syntax

CompositeGrid grid;
// Database tools
readFromDatabaseFile (grid, filename);

// Make a grid function from a grid
floatCompositeGridFunction w(grid, cellCentered, 2);

// Visualization tools
PlotStuff ps;
ps.plot (grid);
ps.contour (w);

29

At the highest level, Overture code
looks like the underlying mathematics.

uNew = u - dt*(u.convectiveDerivative() - nu*u.laplacian());

unew = u - δδδδ t ((u ∇)u - ν∆ν∆ν∆ν∆ u)

Mathematical expressions involving differential operators such as

are expressed concisely using the Overture operator classes.

This example advances a convection-diffusion equation on an
overlapping grid. All grid-dependent and parallel details are hidden
at this level.

30

3D Incompressible
Navier-Stokes

float dt=.0005, viscosity=.05;

for (int step=0; step < 100; step++)
{

// ... forward Euler
u += dt*(-u.convectiveDerivative() + viscosity*u.laplacian());
u.applyBoundaryCondition (allVelocityComponents, dirichlet, wall);
u.interpolate();

// ... correct by enforcing incompressibility constraint
u = projection.project (u);

// ... visualize
if (step % 10 == 0) ps.streamLines (u);

}

High Level Operations on Overset Grids

31

P++ Stencil Operations Scale Well on
ASCI Blue Pacific

2D Jacobi, 1D Partition, total unknowns=10000000

0.1

1

10

100

4 8 16 32 64 128 256

Number of Processors

T
im

e

Parallel C code

P++ code

Efficiency is provided
through the ROSE
preprocessor

32

Compilers cannot optimize object interactions

Object-oriented applications for scientific computing introduce

abstractions customized to application domains but the compiler is

unable to optimize these abstractions on parallel computer architectures

Problem Statement

Solution
Semantics-Driven Optimization

Use what we know about the objects to drive the optimization

33

ROSE transforms high-level Overture statements into

low-level code the compiler can optimize

Index I (1,n,1);
doubleArray Solution(n+1);
doubleArray RHS(n+1);
Solution(I) =

((h*h)*RHS(I) + Solution(I+1) + Solution(I-1)) / 0.5;

P++ Code

Index I (1,n,1);
doubleArray RHS(n+1);
doubleArray Solution(n+1);
double* restrict RHS_data = RHS .getDataPointer();
double* restrict Solution_data = Solution.getDataPointer();

int I_index = 0;
int I_base = I.getBase();
int I_bound = I.getBound();

for (I_index = I_base; I_index < I_bound; I_index++)
Solution_data[I_index] = ((h*h)*RHS_data[I_index] +

Solution_data[I_index+1] +
Solution_data[I_index-1]) / 0.5;

Automated ROSE Transformation

34

Preprocessor is Optional

Framework Optimizing
Preprocessor

Yes

Application Code Using
Framework (C++ Code)

Optimize?
No

Object-Oriented
Framework

Executable
Application

OptimizedPreprocessor Output
(C++ Code)

C++ Compiler

35

ROSE: Optimizing preprocessor

� Optional Optimizing Preprocessor
� Automates sophisticated transformations

—Translates array syntax to optimized C-loops
–Fusion of expressions

–Fusion of statements

—Cache based transformations for Super-
FORTRAN Performance

—Message Passing Latency Hiding
—Eliminates Array Class Overhead

� Uses Edison Design Group (EDG) C++ Front-End
� Uses SAGE II C++ source code restructuring tool

internally

36

ROSE Preprocessors

ROSE Project Objective: Better performance for OO applications

How ROSE Works: C++ source C++ source w/transformations

1) Parse C++ application to form a C++ program tree

(nodes in the tree represent elements of C++ grammar)

2) Define grammars (the elements of a computer language) specific
to an OO application or library

3) Parse C++ program tree to build program trees for each grammar

4) Use grammars to recognize high level objects and expressions

5) Edit the C++ program tree to build in transformations

6) Unparse the C++ program tree to generate C++ code

37

Performance of Object-Oriented Abstractions

•Use of high-level abstractions simplifies development
•Parallel and Single CPU Performance is also important
•ROSE: tool for building optimizing preprocessors

•Uses modified version of SAGE II (based on EDG)
•ROSETTA: builds grammars

•Source code generator for modified SAGE II (C++ Grammar)
•Generates additional higher-level grammars based on SAGE II

•Preprocessor source code is automatically generated
•User specifies:

• 1) Targets to optimize (user defined objects)

• 2) Transformations
•Optimized application code (C and C++) is generated

•output code is formatted the same as input code

38

Purpose of Grammars

Recognize the use of Abstractions within an Application’s Program Tree

Reduce the Complexity of the Program Tree

Grammars Identify Statements, Expressions, and Types associated with a
target abstraction and those not associated with abstractions
(defined to be other Statements, other Expressions, other Types)

39

Application Program Trees

int main()
{
int a, b = 1;
a = b;

}
function declaration

function name

mangled name

argument list

return type

string

function type

return type

argument type list

original return type

int type

int type

string

int main()
function definition

scope

symbol tablecode block

scope

statement list

variable declaration statement

expression statement

variable initialized name list

b initialized name

name

string

type

int type

a initialized name

name

string

type

int type

initializer expression

int value expression

1 int
type

int type

Simplified Tree

expression root

assignment expression

binary expression

variable reference
expression

variable reference
expression

int type

a variable symbol b variable symbol

40

Where to apply optimizations
(finding our way in the forest)

•Looking at the C++ Grammar is like reading a map
with an electron microscope (everything is there
but you still can’t see where you are)

•Abstractions help condense the program tree

•The semantics of the abstractions help us read the
condensed program tree

41

Relationship of ROSE to Other work

EDG C++ Front End EDG C++/C
Code Generator

SAGE
(C++ Grammar)

SAGE C++
Code Generator

ROSE

C++
Grammar

Grammar Grammar

Grammar Grammar GrammarGrammar

Transformation

Transformation

TransformationTransformationTransformationTransformation

Transformation

ROSE
C++

Code
Generator

42

Meta Program Level
Program Level:

variables are objects with a defined type

variables define locations in memory

int i;
floatArray X;
list<X> listOfX;

Meta Program Level:
variables are Grammars,Terminals, and Non-Terminals

Grammars, Terminals, and Non-Terminals define types
variables define types

Grammar CxxGrammar;
Grammar XGrammar;
Terminal ClassType = XGrammar.getTerminal(“ClassType”);
Nonterminal X = ClassType.buildNewType(“X”);
XGrammar.addTerminal(X);

43

Output Must Resemble Input

Can’t expect users to trust a tool for which the output does not resemble the input

Machine generated source code can be:

Ugly

Impossible to debug

Difficult to trust

ROSE Unparser generates friendly output:

Preserves variable names

Inserts references to line numbers in original source (for debuggers)

Preserves all preprocessor control structure (#include, #ifdefs, etc.)

Preserves users comments

Lots of options to control unparsing

44

Building New Grammars
(adding user defined type X)

Root of
Grammar

expression

statement

symbol

support

function type

partial function type

member function type

signed int type

char type

unsigned int type

signed char type

long type

unsigned short type

signed short type

int type

signed long type

unsigned char type

short type

unsigned long type

float type

void type

global void type

wchar type

double type

array type

bool type

long long type

unsigned long long type

long double

string type

complex type

enum type

reference type

modifier type

ellipse type

default type

pointer type

pointer member type

typedef type

type

named type

class type

X TYPE

45

C++ Grammar (statements)

Root of
Grammar

statement

scope statement

return statement

function type table

goto statement

Expression statement

try statement

default option

Break statement

continue statement

asm statement

label statement

Case option

spawn statementcatch option statement

class definition

switch statement

for statement

function definition

global scope

block

if statement

while statement

do while statement

declaration

member function declaration

function declaration

variable declaration

variable definition

class declaration

enum declaration

typedef declaration

template class declaration

expression

expressions

symbol

support

statement

scope statement

return statement

function type table

goto statement

Expression statement

try statement

default option

Break statement

continue statement

asm statement

label statement

Case option

spawn statementcatch option statement

class definition

switch statement

for statement

function definition

global scope

block

if statement

while statement

do while statement

declaration

member function declaration

function declaration

variable declaration

variable definition

class declaration

enum declaration

typedef declaration

template class declaration

New X Statements Old Non-X Statements

46

Building New Grammars
(Adding User Defined X Expressions)

Root of
Grammar

expression

statement

symbol

support

X Expression
Binary operator value expression

Unary operator

Expression list expression

new expression

variable reference expression

function reference expression

function call expression

member function reference

conditional expression

delete expression

this expression

reference expression

class name reference

sizeOf operator

typeId operator

initializer expression

aggregate initializer

assignment initializer

constructor initializer

expression root

operator-

operator+

operator!

pointer dereference

throw operator

address operator

operator- -

operator++

operator^

cast operator

dot operator

dot star

comma operator

array reference

scope operator

operator->

operator->*

operator==

operator<

operator>

operator!=

operator<=

operator>=

operator||

operator+

operator-

operator*

operator/

operator%

operator&&

operator^

operator&

operator|

operator<<

operator>>

operator=

operator+=

operator-=

operator&=

operator|=

operator*=

operator/=

operator%=

operator^=

operator<<=

operator>>=

string

short

char

unsigned char

wchar

unsigned short

int

enum

unsigned int

long double

long int

long long int

unsigned long long int

unsigned long

float

double

boolean

New X Expressions

Binary operator

Unary operator

Expression list expression

new expression

variable reference expression

function reference expression

function call expression

member function reference

conditional expression

delete expression

this expression

reference expression

class name reference

sizeOf operator

typeId operator

initializer expression

aggregate initializer

assignment initializer

constructor initializer

expression root

operator-

operator+

operator!

pointer dereference

throw operator

address operator

operator- -

operator++

operator^

cast operator

dot operator

dot star

comma operator

array reference

scope operator

operator->
operator->*

operator==
operator<
operator>
operator!=
operator<=
operator>=

operator||

operator+
operator-
operator*
operator/
operator%
operator&&

operator^
operator&
operator|
operator<<
operator>>

operator=

operator+=
operator-=
operator&=
operator|=
operator*=
operator/=
operator%=
operator^=
operator<<=
operator>>=

string

short

char

unsigned char

wchar

unsigned short

int

enum

unsigned int

long double

long int

long long int

unsigned long long int

unsigned long

float

double

boolean

Old Non-X Expressions
Non-X Expression

value expression

47

Unparsed Example

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main() {

int x = 4;

//these comments are difficult
for (int i = 0; i < 10; i++) {
while (x) {
x = x + 1;

if (false) { x++; x = 7+x; }
else {
x = x - 1;
x--;

}

// comments!
x++;
x += 1;

}
}
return 0;

}

#include "A++.h"
#include "../include/ROSE_TRANSFORMATION_SOURCE.h"
#include <iostream.h>

int main(){

int x=4;

//these comments are difficult
for (int i=0; i < 10; i++){
while(x){
x = x + 1;

if (FALSE){ x++; x = 7 + x; }
else {
x = x - 1;
x--;

}

// comments!
x++;
x += 1;

}
}
return 0;

}

Original Input C++ Source code Unparsed Output C++ Source code

48

Research Approach:

Preprocessor Design Flowchart

Optimizing
Preprocessor
Infrastructure

Framework
Grammar

Generated
Code

BNF notation
for Framework

Grammar

Framework
Optimizing

Preprocessor

Yes

Application
Code Using
Framework
(C++ Code)

Optimize?

No

Object-Oriented
Framework

Executable
Application

Transformation
Grammar 1

Generated
Code

BNF Notation for
Transformation

Grammar 1

Transformation
Grammar 2

Generated
Code

BNF Notation for
Transformation

Grammar 2

Transformation
Grammar n

Generated
Code

BNF Notation for
Transformation

Grammar n

. . .

. . .

. . .

C++ Compiler
Compile to Build

Preprocessor

Optimized
Preprocessor

Output (C++ Code)
C++ Compiler Transformation

Description n
Transformation

Description 2
Transformation

Description 1
. . .

49

#include "A++.h"

int main()
{
int size = 10;
doubleArray A(size);
doubleArray B(size);
Range I(1, size-2);

A(I) = (B(I+1) + B(I-1)) * 2.0;

printf ("Program Terminated Normally! \n");
return 0;

}

ROSE Transformation: A++ Code

50

ROSE Transformation: After ROSE
#include <A++.h>

#4 "test2.C"
int main()

{
auto int size=10;
auto double gamma=2;
auto doubleArray A(size);

#9 "test2.C"
auto doubleArray B(size);

#10 "test2.C"
auto Range I(1,size - 2);

#11 "test2.C"
auto Range J(1,size - 2);

#13 "test2.C"
{
// Transformation for: A(I) = B(I-1) + B(I+1);

int rose_index=0;
double * restrict A_rose_pointer = (A . getDataPointer)();
double * restrict B_rose_pointer = (B . getDataPointer)();
const int base_1D_0 = (I . getBase)();
const int bound_1D_0 = (I . getBound)();
for(rose_index = base_1D_0; rose_index <= bound_1D_0; rose_index++)

{
A_rose_pointer[rose_index] =

(B_rose_pointer[(rose_index + 1)] + B_rose_pointer[(rose_index - 1)]) * 2;
}

}
#249 "/usr/include/stdio.h"

printf(((const char *)"Program Terminated Normally! \n"));
#49 "test2.C"

return 0;
}

51

Grid Size (each axis)
10 100 1000

R
el

at
iv

e
P

er
fo

rm
an

ce
to

O
p

ti
m

iz
ed

C

0.8
0.9

2

3

4
5
6
7
8
9

20

30

40
50
60
70
80
90

200

1

10

100 A++ without ROSE/C
A++ with ROSE/C

A++ Performance with and without ROSE (Sun Ultra)

52

Future Work

•Improved Performance (ROSE)

•Parallelism for Overlapping Grid Problems

•More Solvers

•Access to more external solver libraries (elliptic methods)

•Improved integration with PetSc

